Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Invest ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2233591

ABSTRACT

BACKGROUND: Heterologous effects of vaccines are mediated by 'trained immunity' whereby myeloid cells are metabolically and epigenetically reprogrammed resulting in heightened responses to subsequent insults. Adenovirus vaccine vector has been reported to induce trained immunity in mice. Therefore, we sought to determine if the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, could induce trained immunity in vivo in humans. METHODS: Ten healthy volunteers donated blood on the day before receiving the ChAdOx1 nCoV-19 vaccine and on day 14, 56 and 90 post vaccination. Monocytes were purified from PBMC; cell phenotype was determined by flow cytometry, expression of metabolic enzymes were quantified by RT-qPCR and production of cytokines and chemokine in response to stimulation ex vivo were analyzed by multiplex ELISA. RESULTS: Monocyte frequency and count were increased in peripheral blood up to 3 months post vaccination compared with their own pre-vaccine control. Expression of HLA-DR, CD40 and CD80 was enhanced on monocytes for up to 3 months following vaccination. Moreover, monocytes had increased expression of glycolysis-associated enzymes 2 months post vaccination. Upon stimulation ex vivo with unrelated antigens, monocytes produced increased IL-1ß, IL-6, IL-10, CXCL1, and MIP-1α, and decreased TNF, compared with pre-vaccine controls. Resting monocytes produced more IFN-γ, IL-18, and MCP-1 up to 3 months post vaccination compared with pre-vaccine controls. CONCLUSION: These data provide evidence for the induction of trained immunity following a single dose of the ChAdOx1 nCoV-19 vaccine. FUNDING: This work was funded by The Health Research Board (EIA-2019-010) and Science Foundation Ireland Strategic Partnership Programme (Proposal ID 20/SPP/3685).

2.
PLoS One ; 17(7): e0271463, 2022.
Article in English | MEDLINE | ID: covidwho-1933390

ABSTRACT

γδ T cells are thought to contribute to immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanisms by which they are activated by the virus are unknown. Using flow cytometry, we investigated if the two most abundant viral structural proteins, spike and nucleocapsid, can activate human γδ T cell subsets, directly or in the presence of dendritic cells (DC). Both proteins failed to induce interferon-γ production by Vδ1 or Vδ2 T cells within fresh mononuclear cells or lines of expanded γδ T cells generated from healthy donors, but the same proteins stimulated CD3+ cells from COVID-19 patients. The nucleocapsid protein stimulated interleukin-12 production by DC and downstream interferon-γ production by co-cultured Vδ1 and Vδ2 T cells, but protease digestion and use of an alternative nucleocapsid preparation indicated that this activity was due to contaminating non-protein material. Thus, SARS-CoV-2 spike and nucleocapsid proteins do not have stimulatory activity for DC or γδ T cells. We propose that γδ T cell activation in COVID-19 patients is mediated by immune recognition of viral RNA or other structural proteins by γδ T cells, or by other immune cells, such as DC, that produce γδ T cell-stimulatory ligands or cytokines.


Subject(s)
COVID-19 , Dendritic Cells , Nucleocapsid Proteins , Receptors, Antigen, T-Cell, gamma-delta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/immunology , COVID-19/virology , Dendritic Cells/immunology , Humans , Interferon-gamma/immunology , Nucleocapsid Proteins/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL